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It is well known that the constant injection rate flow in radial Hele-Shaw cells leads to the formation of
highly branched patterns, where finger tip-splitting events are plentiful. Different kinds of patterns arise in the
lifting Hele-Shaw flow problem, where the cell’s gap width grows linearly with time. In this case, the mor-
phology of the emerging structures is characterized by the strong competition among inward moving fingers.
By employing a mode-coupling theory we find that both finger tip-splitting and finger competition can be
restrained by properly adjusting the injection rate and the time-dependent gap width, respectively. Our theo-
retical model approaches the problem analytically and is capable of capturing these important controlling
mechanisms already at weakly nonlinear stages of the dynamics.

DOI: 10.1103/PhysRevE.81.016312 PACS number�s�: 47.15.gp, 47.54.�r, 47.20.Ma, 47.15.km

I. INTRODUCTION

The Saffman-Taylor instability �1� arises at the interface
separating two viscous fluids constrained to flow in the nar-
row gap between closely spaced parallel plates of a Hele-
Shaw cell. This famous pattern-forming problem �2� involves
the development of stable smooth fingers in long rectangular
channels or branched fronts if the flow takes place in an open
radial geometry. Under radial flow circumstances �3–5� a less
viscous fluid is radially injected into a more viscous one
producing fingerlike structures which can split at their tips,
tending toward a dense-branching morphology. The radial
viscous fingering problem �Fig. 1� has been extensively stud-
ied during the last few decades, both experimentally �6–8�
and theoretically �9–13�.

Very recently, two research groups �14,15� have examined
a still poorly explored aspect of the radial viscous fingering
problem: the possibility of suppressing the emergence of the
usual branched morphology, by properly controlling the in-
jection rate of the less viscous fluid. In contrast to most pre-
vious investigations, instead of considering a constant injec-
tion process, they assumed a particular time-varying
injection rate which scaled with time like t−1/3. This proce-
dure has been originally suggested by Bataille �3� who per-
formed a linear stability analysis of the problem. However,
under such time-dependent injection rate, the long-time evo-
lution of the pattern-forming dynamics has been investigated
in Refs. �14,15�. Their numerical and experimental findings
for the fully nonlinear regime demonstrate that by continu-
ously adjusting the injection rate the usual branched patterns
are indeed suppressed and replaced with n-fold symmetric
universal shapes. These results introduce a suggestive control
technique which might improve the efficiency of a number of
physical, biological, and engineering systems related to the
radial viscous fingering phenomenon.

In this work we investigate control mechanisms in radial
viscous fingering, but focus on a different time regime, and
use an alternative theoretical strategy to attack the problem.

Unlike previous studies which either addressed the early lin-
ear �3� or the fully advanced nonlinear time regimes �14,15�,
we tackle the problem by paying special attention to the
dynamics that bridges these two extremes. We do this by
considering the intermediate weakly nonlinear time stage.
Moreover, instead of using purely linear stability analysis or
intensive highly sophisticated numerical simulations, we ap-
proach the problem analytically through a second-order
mode-coupling theory �9�. As opposed to conventional linear
stability methods our weakly nonlinear study enables one to
access the morphology of the emerging patterns. This theo-
retical procedure is valid and accurate at the onset of the
nonlinear effects and gives insight into mechanisms of pat-
tern control.

For the injection-driven radial fingering problem we show
that finger tip splitting is suppressed, already at the weakly
nonlinear stage, if the injection rate behaves as prescribed in
Refs. �3,14,15�. We apply a similar maneuvering to demon-
strate that fingering formation in time-dependent gap Hele-
Shaw flows �16–20� can also be disciplined if one conve-
niently changes the lifting rate of the upper plate. In this case
we show that finger competition is restrained if the gap width
scales with time with exponent −2 /7. In both cases mode-
coupling theory provides mechanisms for the suppression of
fingering, allowing the emergence of more symmetric struc-
tures. In this work we focus on the unstable situation in
which the more viscous fluid is displaced by the less viscous
one.
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FIG. 1. Schematic setup for the injection-driven radial Hele-

Shaw flow.
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II. INJECTION-DRIVEN HELE-SHAW FLOW

A. Mode-coupling approach

Consider a Hele-Shaw cell of constant gap spacing b con-
taining two immiscible, incompressible, and viscous fluids
�see Fig. 1�. Denote the viscosities of the inner and outer
fluids, respectively, as �1 and �2. Between the two fluids
there exists a surface tension �. Fluid 1 is injected into fluid
2 at a given injection rate q=q�t� �equal to the area covered
per unit time�, which may depend on time. We describe the
perturbed fluid-fluid interface as R�� , t�=R�t�+��� , t�, where
� represents the azimuthal angle and R�t� is the time-
dependent unperturbed radius,

R�t� =�R0
2 +

1

�
�

0

t

q�t��dt�, �1�

with R0 being the unperturbed radius at t=0. The presence
of the time integral in Eq. �1� is required since the injec-
tion rate is not necessarily constant. In addition, ��� , t�
=�n=−�

+� �n�t�exp�in�� denotes the net interface perturbation
with Fourier amplitudes �n�t� and discrete azimuthal wave
numbers n=0, �1, �2, . . .. Our perturbative approach keeps
terms up to the second order in �. In the Fourier expansion of
� we include the n=0 mode to maintain the area of the per-
turbed shape independent of the perturbation �. Mass conser-
vation imposes that the zeroth mode is written in terms of the
other modes as �0=−�1 /2R��n�0��n�t��2.

For the quasi-two-dimensional geometry of the Hele-
Shaw cell, the flow velocity v j =−�	 j, where 	 j represents
the velocity potential in fluids j=1,2. The equation of mo-
tion of the interface is given by Darcy’s law �1,2,5,9�

A		1 + 	2

2

 − 		1 − 	2

2

 = −

b2�p1 − p2�
12��1 + �2�

, �2�

where the dimensionless parameter A= ��2−�1� / ��2+�1� is
the viscosity contrast and pj represents the hydrodynamic
pressure.

To include the contributions coming from surface tension
we consider a Young-Laplace pressure boundary condition,
which expresses the pressure jump across the fluid-fluid in-
terface,

p1 − p2 = �
 , �3�

where the interfacial curvature is denoted by 
. The problem
is then specified by Eq. �3�, plus the kinematic boundary
condition, which states that the normal components of each
fluid’s velocity are continuous at the interface

n · �	1 = n · �	2, �4�

with n=��r−R�� , t�� / ���r−R�� , t��� representing the unit
normal vector at the interface.

For the injection-driven Hele-Shaw flow we consider the
incompressibility condition

� · v j = 0. �5�

Under such circumstances, we define Fourier expansions for
the velocity potentials, which obey Laplace’s equation
�2	 j =0. Then, we express 	 j in terms of the perturbation

amplitudes �n by considering condition �4�. Substituting
these relations, and the pressure jump condition �3� into Eq.
�2�, always keeping terms up to second order in �, and Fou-
rier transforming, we find the dimensionless equation of mo-
tion for the perturbation amplitudes �for n�0�,

�̇n = ��n��n + �
n��0

�F�n,n���n��n−n� + G�n,n���̇n��n−n�� ,

�6�

where the overdot denotes total time derivative,

��n� =
Q�t�
2�R2 �A�n� − 1� −

1

R3 �n��n2 − 1� �7�

is the linear growth rate, and

Q�t� =
12q�t���1 + �2�

�b
�8�

is a dimensionless injection parameter. The second-order
mode-coupling terms are given by

F�n,n�� =
�n�
R
�Q�t�A

2�R2 	1

2
− sgn�nn��


−
1

R3�1 −
n�

2
�3n� + n�� , �9�

G�n,n�� =
1

R
�A�n��1 − sgn�nn��� − 1� . �10�

The sgn function equals �1 according to the sign of its ar-
gument. In Eq. �6� lengths are rescaled by b and time by
�12b��1+�2�� /�. For the remainder of this section, we work
with the dimensionless version of the equations. We stress
that the values we take for our dimensionless parameters are
consistent with typical physical quantities used in real ex-
periments for injection-driven radial viscous flow �2,3,5–8�.

B. Suppression of finger tip splitting

We study a mechanism to control the finger shape behav-
ior, by considering the coupling of a small number of modes.
To simplify our discussion we rewrite Eq. �6� in terms of
cosine and sine modes, where the cosine an=�n+�−n and sine
bn= i��n−�−n� amplitudes are real valued. Without loss of
generality we choose the phase of the fundamental mode, so
that an�0 and bn=0. Under such circumstances, finger tip-
sharpening and tip-splitting phenomena are described by
considering the influence of a fundamental mode n on the
growth of its harmonic 2n �9�. One key piece of information
about the morphology of the emerging patterns can be ex-
tracted from the equation of motion for the harmonic cosine
mode,

ȧ2n = ��2n�a2n +
1

2
T�2n,n�an

2, �11�

where the finger tip function is defined as
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T�2n,n� = �F�2n,n� + ��n�G�2n,n�� . �12�

It can be shown that the equivalent growth of the sine mode
b2n is uninfluenced by an and does not present second-order
couplings, so we focus on the growth of the cosine mode.
The interesting point about the function T�2n ,n� is that it
controls the finger shape behavior. The sign of T�2n ,n� dic-
tates whether finger tip sharpening or finger tip splitting is
favored by the dynamics. From Eq. �11� we see that, if
T�2n ,n��0, the result is a driving term of order an

2 forcing
growth of a2n�0, the sign that is required to cause outward-
pointing fingers to become sharp, favoring finger tip sharp-
ening. In contrast, if T�2n ,n�0 the growth of a2n0
would be favored, leading to outward-pointing finger tip
splitting.

To analyze the influence of the injection rate on the tip-
splitting behavior at second order, in Fig. 2�a� we plot the
behavior of T�2n ,n� as a function of time, for the coupling
between two Fourier modes �n=5 and 2n=10�. This is done
for the situations in which the injection rate is constant �solid
curve�, and also when it depends on time �dashed curve� as

Q�t� = f�n,A�t−1/3, �13�

where

f�n,A� = �8�3�3n2 − 1�2

3A2 1/3

. �14�

A similar expression has been originally derived by Bataille
�3�. Equation �13� can be obtained by using Eqs. �1� and �7�
and by setting d��n� /dn=0. It provides the adequate injec-
tion rate needed to maintain the number of fingers n fixed
and is equal to the fastest growing mode. For Q�t��const,
we observe that T�2n ,n� is initially positive, reaches zero,
and then becomes negative. This describes the usual finger
tip-splitting scenario: at early time stage the fingers look
sharp, but as time progresses they become wider at their tips,
which eventually tend to bifurcate. The situation is consider-
ably different when the injection rate decreases with time as

prescribed by Eq. �13�: now, the finger tip function is always
positive and assumes smaller magnitudes as time evolves.
This indicates that the fingers will not be subjected to a tip-
splitting process. Therefore, the patterns will retain their
original n-fold symmetry as they grow.

In order to reinforce the conclusions reached from Fig.
2�a�, in Fig. 2�b� we compare the time evolution of the co-
sine harmonic mode a2n for both constant and time-varying
injection rates. The initial perturbation amplitudes are an�0�
=0.1 and a2n�0�=0. We clearly observe that the weakly non-
linear coupling dictates the growth of the harmonic. For
Q�t��const the sign of the harmonic goes strongly negative
although its initial value was zero. In this case, the nonlinear
effects naturally enhance tendency toward finger tip splitting.
On the other hand, when Q� t−1/3 the amplitude of the har-
monic mode does not change much with time and is always
positive. This points to a nonlinear stabilization of the tip-
splitting phenomenon induced by the nonlinear coupling be-
tween the harmonic mode and its fundamental.

The combined role of injection and nonlinear coupling in
determining the finger tip behavior is even more clearly il-
lustrated in Fig. 3 which plots the time evolution of the in-
terface, plotted at equal time intervals �t. Figure 3�a� is plot-
ted for 0� t�62.4, �t=10.4, and �=62.5, while in Fig. 3�b�
we have 5� t�905, �t=150, and �=1790. We consider the
interaction of two representative cosine modes �a fundamen-
tal n=5 and its harmonic 2n=10�, for �a� Q=61.5 and �b�
Q�t�= f�5,1�t−1/3. Again, we take the initial amplitudes as
an�0�=0.1 and a2n�0�=0.

At this point we discuss our assessment of the largest time
�t=�� for which our weakly nonlinear theoretical results are
valid. We follow an approach originally proposed by Gingras
and Rácz �21� for the linear regime and extend its range of
applicability to the weakly nonlinear stage of evolution.
While plotting the evolving interface we stop the time evo-
lution of the patterns as soon as the base of the fingers starts
to move inward, which would make successive interfaces to
cross one another. Since this crossing is not observed in ex-
periments �2,3,5–8�, as in Ref. �21�, we adopt the largest
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FIG. 2. �Color online� �a� Behavior of the finger tip function T�2n ,n� as time is varied, considering the coupling of modes n=5 and
2n=10; �b� time evolution of the cosine perturbation amplitude for the first harmonic mode a2n. The solid curves describe the situation at
constant injection rate, while the dashed curves are plotted by taking a time-varying injection rate Q= f�n ,A�t−1/3. The constant injection rate
is Q=61.5 and f�5,1�=76.8.
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time before crossing as the upper bound time for the validity
of our theoretical description. The usefulness and effective-
ness of this criterion have been demonstrated in Ref. �21�.
Thus, for the injection problem the instant when the interfa-
cial velocity becomes negative for the first time gives an
upper limit for the period in which the weakly nonlinear
description is valid. This validity condition can be math-
ematically expressed as

�dR
dt


t=�

= �Ṙ�t� + �̇��,t��t=� = 0. �15�

Notice that, differently from what has been done in Ref. �21�,
we evaluate Eq. �15� by taking into account second-order
contributions for interface perturbation ��� , t�, as prescribed
by our mode-coupling equation �6�.

As one can see by examining Fig. 3�a� a constant injec-
tion rate leads to wide fingers, having blunt tips. At later
times, these grown fingers clearly start to bifurcate, by split-
ting at their tips. This scenario is significantly changed when
we consider a time-varying injection rate. In Fig. 3�b� we see
a nearly circular initial interface evolving to a five-fingered
structure. At later times, the resulting patterns are still five-
fold symmetric, presenting the formation of fingering struc-
tures which show no tendency toward finger broadening and
finger tip splitting. This is exactly the kind of behavior ob-
served in Refs. �14,15� by performing experiments and simu-
lations at the advanced time regime. Our mode-coupling
weakly nonlinear analysis is able to capture this fully non-
linear stabilization process through relatively simple analyti-
cal means.

III. TIME-DEPENDENT GAP HELE-SHAW FLOW

A. Physical problem and mode-coupling description

A particularly interesting variation of the traditional radial
Saffman-Taylor problem is the investigation of fingering in-
stabilities in Hele-Shaw cells presenting variable gap spacing
�16–20�. In such a “lifting” version of the radial fingering
problem, the upper plate is lifted uniformly, while the lower
plate remains at rest. During the lifting process the plates
remain parallel to each other, so that the gap is a function of
time, but not of space. Usually, the upper plate is moved at a

constant lifting velocity V, so that the gap width grows lin-
early with time as b�t�=b0+Vt, where b0 is the initial plate-
plate distance. This defines the conventional setup for time-
dependent gap Hele-Shaw flows.

The uniform lifting forces the fluid-fluid interface to move
inward forming visually striking fingering patterns. Initially,
a circular droplet of the more viscous fluid undergoes a de-
stabilization process via the penetration of multiple fingers of
the outer less viscous fluid. The interface behavior is mark-
edly characterized by the competition among the fingers of
the invading less viscous fluid, which advance toward the
center of the droplet. At the same time, it is also observed
that the outermost limit of the interface ceases to shrink,
indicating that the competition among the fingering struc-
tures of the more viscous fluid is considerably less intense.

In contrast to the injection-driven situation discussed in
Sec. II where finger tip splitting is the prevalent pattern-
forming mechanism, the most noteworthy morphological as-
pect in time-dependent gap Hele-Shaw flows is the strong
competition among the penetrating fingering structures. In
this section our main goal is to get analytical insight about
the possibility of controlling such a finger competition pro-
cess by properly manipulating the lifting rate of the upper
plate.

The geometry of the time-dependent gap Hele-Shaw cell
is sketched in Fig. 4. Consider a Hele-Shaw cell of a variable
gap width b�t� containing two immiscible, incompressible,
and viscous fluids. The upper plate of the cell can be lifted
along the direction perpendicular to the cell plates. On the
other hand, the lower plate is held fixed. The initial fluid-
fluid interface is circular, having radius R0. By using volume

(b)(a)

FIG. 3. Snapshots of the evolving interface,
plotted at equal time intervals for the interaction
of two cosine modes n=5 and 2n=10 when �a�
Q�t��const and �b� Q�t�= f�n ,A�t−1/3. Here, the
constant injection rate is Q=61.5 and f�5,1�
=76.8. The area in black represents the more vis-
cous fluid. Finger tip splitting is clearly present in
�a� and suppressed in �b�.

FIG. 4. Schematic setup for the time-dependent gap radial Hele-
Shaw flow.
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conservation the time-dependent radius of the unperturbed
interface is given by

R�t� = R0� b0

b�t�
. �16�

As in the case of the injection-driven flow, we use Darcy’s
law �2�, the pressure jump condition �3�, and the kinematic
boundary condition �4� to obtain a differential equation for
the perturbation amplitudes. However, due to the lifting of
the upper plate, the gap-averaged incompressibility condition
is now written as

� · v = −
ḃ�t�
b�t�

, �17�

so that the velocity potential obeys a Poisson equation

�2	 j =
ḃ�t�
b�t�

. �18�

Nevertheless, since the gap is only time dependent, the solu-
tion of Eq. �18� differs from the usual Laplacian only by the

simple additional term 	̄= ḃr2 / �4b�. Keeping this in mind,
and by following the standard steps described in the
injection-driven situation, a dimensionless mode-coupling
equation of the form given by Eq. �6� can be obtained for the
lifting Hele-Shaw case, where now

��n� = −
ḃ

2b
�A�n� + 1� −

8b7/2

�3 �n��n2 − 1� �19�

is the linear growth rate, and �=2R0 /b0 denotes the initial
aspect ratio. In addition, the second-order mode-coupling
terms are given by

F�n,n�� =
ḃ

b1/2�A�n�	1

2
− sgn�nn��
 − 1

−
16b4

�3 �n��1 −
n�

2
�3n� + n� , �20�

G�n,n�� = 2b1/2�A�n��1 − sgn�nn��� − 1� . �21�

Note that in Eqs. �19�–�21� in-plane lengths, b�t�, and time
are rescaled by 2R0, b0, and the characteristic time T
= �12b0��1+�2�� /�, respectively. Therefore, the dimension-
less gap width is written as b�t�=1+�t, where �= �12V��1
+�2� /��. The dimensionless version of the equations is used
throughout this section. As in Sec. II our dimensionless pa-
rameters are consonant with typical physical quantities used
in real experiments for time-dependent gap radial viscous
flow �17,19�.

B. Inhibition of finger competition

We follow Refs. �9,20� and consider finger length vari-
ability as a measure of the competition among fingers.
Within our approach the finger competition mechanism can
be described by the influence of a fundamental mode n, as-
suming that n is even, on the growth of its subharmonic

mode n /2. The equations of motion for the subharmonic
mode can be written as

ȧn/2 = ���n/2� + C�n�an�an/2, �22�

ḃn/2 = ���n/2� − C�n�an�bn/2, �23�

where the finger competition function is given by

C�n� =
1

2
�F	−

n

2
,
n

2

 + ��n/2�G	n

2
,−

n

2

 . �24�

Observing Eqs. �22� and �23� we verify that C�n��0 in-
creases the growth of the cosine subharmonic an/2, while
inhibiting growth of its sine subharmonic bn/2. The result is
an increased variability among the lengths of fingers of fluid
1 invading the less viscous fluid 2. This effect describes the
enhanced competition of the outward moving fingers of fluid
1. Sine modes bn/2 would vary the lengths of fingers of fluid
2 penetrating into fluid 1, but it is clear from Eq. �23� that
their growth is suppressed. Reversing the sign of C�n� would
exactly reverse these conclusions, such that modes bn/2
would be favored over modes an/2. Therefore, C�n�0
would indicate an increased competition among the inward
moving fingers of fluid 2. Regardless of its sign, the magni-
tude of the function C�n� measures the strength of the com-
petition: increasingly larger values of C�n� lead to an en-
hanced finger competition. The validity and correctness of
this simple finger competition mechanism during advanced
time stages have been extensively tested by numerical simu-
lations �22,23�.

To examine the influence of the time-dependent gap width
on the finger competition behavior at second order, in Fig.
5�a� we plot the behavior of C�n� as a function of time,
for the coupling between two Fourier modes �n=56 and
n /2=28�. This is done for the situations in which the gap
width grows linearly with time b�t�=1+�t �solid curves�,
and also when it varies �dashed curves� as

b�t� = �1 + g�n,A,��t�−2/7, �25�

where

g�n,A,�� = �56�3n2 − 1�
A�3  . �26�

This expression can be obtained by using our Eq. �19� and
setting d��n� /dn=0. Equation �25� provides the proper time-
dependent gap width that is needed to maintain the number
of fingers n fixed and equal to the fastest growing mode.

By examining Fig. 5�a� we observe that for these two
different ways of lifting the upper plate, the finger competi-
tion function C�n� only assumes negative values. This indi-
cates that, for both cases, finger competition among inward
moving fingers should be observed. However, it is also no-
ticed that the magnitude of C�n� is smaller when b�t� is given
by Eq. �25�. This means that we should expect less intense
finger competition events for this kind of lifting if compared
with the usual situation in which b�t�� t.

The predictions made in Fig. 5�a� are supported by the
results depicted in Fig. 5�b� which plots the time evolution
of the sine �bn/2� and cosine �an/2� subharmonic amplitudes
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for b�t�=1+�t �solid curves� and b�t�= �1+g�n ,A ,��t�−2/7

�dashed curves�. We take the initial amplitudes as an/2�0�
=bn/2�0�=0.000 46 and an�0�=0.0013. Recall that the finger
length variability and the very nature of finger competition
�i.e., among inward or outward moving fingers� depend
on the relative magnitudes of cosine and sine subharmonic
amplitudes. From Fig. 5�b� it is evident that the growth
of bn/2 over an/2 is significantly diminished when b�t�= �1
+g�n ,A ,��t�−2/7, meaning that a restrained finger competi-
tion should occur.

The inhibition effect discussed above is further illustrated
in Fig. 6 which shows the fluid-fluid interface at time t=4
considering the same initial conditions and physical param-
eters used in Fig. 5�b�. We point out that for the lifting prob-
lem the largest allowed time �, which can also be calculated
from Eq. �15�, indicates the transition from negative �inward
motion� to positive �outward motion� interfacial velocity.
The time �=4 ��=5.3� for the situation depicted in Fig. 6�a�
�Fig. 6�b��. Figure 6�a� exhibits the interface when b�t�=1
+�t, revealing the competition among inward moving fin-
gers. On the other hand, Fig. 6�b� illustrates the interface
obtained when b�t�= �1+g�n ,A ,��t�−2/7, in which the compe-
tition among inward moving fingers is damped, resulting in a
more in-and-out symmetric pattern.

IV. CONCLUSION

Injection-driven flow in radial Hele-Shaw cells results in
highly ramified patterns if the injection rate is constant in
time. The emerging structures are markedly characterized by
the occurrence of finger tip-splitting events. Likewise, time-
dependent gap flow in lifting Hele-Shaw cells leads to com-
plex pattern morphologies if the cell’s gap width grows lin-
early with time. In this case, the resulting shapes are formed
due to the intense competition among the fingered structures.
In this work, we have explored the possibility of controlling
the development of both finger tip splitting and finger com-
petition by properly manipulating the injection and the lifting
rates.

In contrast to previous investigations �14,15� which exam-
ined controlling mechanisms during fully nonlinear stages of
pattern evolution for the injection-driven problem, we fo-
cused on the onset of nonlinear effects. Instead of relying on
meticulous experiments or sophisticated numerical simula-
tions, we used a relatively simple weakly nonlinear ap-
proach. Despite its simplicity, our theoretical model was ca-
pable of extracting important analytical information about
the possibility of inhibiting the appearance of complex inter-
facial features not only in the injection-driven situation, but
also in variable gap width Hele-Shaw flows.
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FIG. 5. �Color online� �a� Behavior of the finger competition function C�n� as time is varied; �b� time evolution of the cosine �an/2� and
sine �bn/2� perturbation amplitudes for the subharmonic mode. The solid curves describe the situation where b�t�=1+�t, with �=0.03. The
dashed curves are plotted by assuming that b�t�= �1+g�n ,A ,��t�−2/7, where g�56,−1,200�=0.066.
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FIG. 6. Snapshot of the fluid-fluid interface at
time t=4 for the interaction of two modes n=56
and n /2=28 �both sine and cosine� when �a�
b�t�=1+�t, with �=0.03, and �b� b�t�= �1
+g�n ,A ,��t�−2/7, where g�56,−1,200�=0.066.
The area in black represents the more viscous
fluid. Finger competition among inward moving
fingers is detected in �a� and inhibited in �b�.
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Our analysis indicates that the control of finger tip split-
ting in injection-driven flow can be understood simply
through the coupling between two modes: the fundamental
and its harmonic. Under such circumstances, a time-
dependent injection rate Q�t�� t−1/3 would lead to the sup-
pression of the branching morphology through the damping
of the harmonic perturbation. Similarly, we have verified that
the determination of a controlling mechanism for finger com-
petition in lifting Hele-Shaw flows could be also be achieved
via a two-mode mechanism, now involving the fundamental
and its subharmonic. In this case, if the gap width varies in
time with a −2 /7 exponent, finger competition is made un-
favorable by means of the inhibited growth of subharmonic
perturbations. By employing these procedures quite symmet-
ric interfacial patterns are obtained, where branching and
competition phenomena are clearly restrained. These sugges-

tive findings indicate that such important controlling mecha-
nisms can be caught and predicted already at weakly nonlin-
ear time stages of the pattern evolution. In conclusion,
realistic predictions are obtained for the morphology of the
patterns without recourse to intensive numerical calculations.
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